Short note

High-spin states in odd-odd ¹⁶⁸Lu

J.H. Ha¹, J.C. Kim¹, C.S. Lee², J.Y. Huh², C.-B. Moon³, Y. Gono⁴, S. Mitarai⁴, T. Morikawa⁴, M. Shibata⁴, H. Watanabe⁴, M. Miyake⁴, E. Komatsu⁴, A. Odahara⁵, E. Ideguchi⁶, X.H. Zhou⁶

¹ Department of Physics, Seoul National University, Seoul 151-742, Republic of Korea

² Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea

³ Department of Physics, Hoseo University, Chung-Nam 337-795, Republic of Korea

⁴ Department of Physics, Kyushu University, Fukuoka 812-81, Japan

⁵ Nishi-nippon Institute of Technology, Fukuoka 800-03, Japan

⁶ RIKEN, Wako, Saitama 351-01, Japan

Received: 27 October 1997 Communicated by B. Herskind

Abstract. High-spin states of odd-odd ¹⁶⁸Lu were observed up to $18\hbar$ for the first time using the ¹⁵⁹Tb(¹³C, $4n\gamma$)¹⁶⁸Lu reaction at $E_{13C} = 58.5$ MeV. $\gamma - \gamma$ coincidence, E_{γ} singles, excitation function, and the DCO ratios were measured. Two rotational bands with signature splitting were populated, among which the lower-energy band is identified as $\pi 7/2^+[404] \otimes \nu 5/2^+[642]$ in view of alignment and energy systematics.

PACS. 23.20.Lv Gamma transitions and level energies -27.70.+q $150 \le A \le 189$

High-spin states of odd-odd nuclei near A = 150 and 190 have shown several intriguing phenomena such as an anomalous(delayed) bandcrossing [1,2], the identical band problem (e.g., $^{173-175}$ Lu [3] and $^{171-175}$ Ta [4]), and signature inversion [5]. In lutetium isotopes, previous high-spin studies were reported on 160 Lu [6], 162 Lu [7], 164 Lu [1,2], and 166 Lu [8]. However, no such studies have been done on 168 Lu to date. The known states are merely low-lying levels obtained by β -decay works [9,10].

In the present work, high-spin states of odd-odd 168 Lu have been observed up to $18\hbar$ or higher for the first time using the $^{159}\text{Tb}(^{13}\text{C}, 4n\gamma)^{168}\text{Lu}$ reaction at a beam energy of 58.5 MeV. The ^{13}C beam was provided by the KUTL tandem accelerator at Kyushu University. The target of ^{159}Tb was a self-supporting foil of 8.5 mg/cm² in thickness. In order to identify γ rays belonging to lutetium isotopes, the X- γ coincidence employing a low energy photon spectrometer (LEPS) was performed at two different beam energies of 55.0 and 58.5 MeV. Figure 1 shows the spectra gated by the 54.1-keV K X-ray of lutetium for the two beam energies. The population of ^{169}Lu whose γ rays are well known is seen to be preferred at the lower energy. The remaining γ rays, as shown in Fig. 1a, are likely to be candidate γ rays belonging to ^{168}Lu .

After having identified γ rays belonging to lute tium isotopes - ¹⁶⁸Lu and ¹⁶⁹Lu being predominantly populated, we performed the singles measurements for the excitation function at three different beam energies of 50.0,

Fig. 1. Coincidence spectra gated by the 54.1-keV K X-ray of Lu taken at two different beam energies of **a** 58.5 and **b** 55.0 MeV. *Solid circles* represent transitions belonging to ¹⁶⁸Lu and (X) to ¹⁶⁹Lu, respectively

55.0, and 58.5 MeV in order to distinguish γ rays of ¹⁶⁸Lu from those of ¹⁶⁹Lu. The latter, corresponding to the 3n channel, is expected to be populated at a lower beam energy. The population of of ¹⁶⁸Lu is found to be most preferred at 58.5 MeV, and yields of ¹⁶⁸Lu relative to ¹⁶⁹Lu as a function of beam energy prove to be consistent with the CASCADE result [11]. The γ - γ coincidence measurement was performed at the beam energy of 58.5

Fig. 2. Level scheme of ¹⁶⁸Lu

MeV. We used three high-purity germanium (HPGe) detectors two of which were covered with bismuth germanate anti-Compton shield (BGO-ACS) and one LEPS. The two HPGe detectors with BGO-ACS were set at 90°, 55°, one HPGe without BGO-ACS at 65°, and the LEPS at 125°, with respect to the beam direction. A total of 26 million coincidence events were collected during the experiment. Multipolarities of γ rays were determined from the DCO (Directional Correlation from Oriented states) ratio, defined as $I_{\gamma}(55^{\circ})$, gated by 90°)/ $I_{\gamma}(90^{\circ})$, gated by 55°) using an adjacent gate of stretched E2 transition. The DCO ratios turned out to be ≈ 1 for $\Delta I = 2$ and ≈ 0.6 for ΔI = 1 transitions, respectively. Activity measurements were also performed by turning the beam off to identify γ rays of β -decay activities.

The level scheme consisting of two rotational bands is shown in Fig. 2. The bandhead spin and parity of band A is found to be 6⁺ by using the Drissi's recipe [12] and the energy systematics of neighboring odd-odd nuclei (¹⁶⁶Lu [8], ¹⁶⁶Tm [13], ^{162,164}Tm [14]). The configuration of the band A is proposed as $\pi 7/2^+$ [404] $\otimes \nu 5/2^+$ [642]. Another rotational band B with weaker population is linked with the yrast band A via the 106.5 keV transition. Although this transition appears to be of dipole character from the DCO ratio, its intensity is too weak to make a firm assignment of spins for the members of band B.

The calculation using the Harris parameters of $\mathcal{J}_0 = 29 \hbar^2/\text{MeV}$ and $\mathcal{J}_1 = 125 \hbar^4/\text{MeV}^3$ showed that the alignment for band A monotonically increases from $4\hbar$ to $6\hbar$ up to $\hbar\omega \approx 0.28$ MeV. This could be probably due to the

Fig. 3. Dynamic moments of inertia of the band A and B in $^{168}\mathrm{Lu}$

progressive proton alignment when the alignment is compared to the neighboring odd-A nuclei such as ¹⁶⁵Yb and 167 Lu [15,16]. This supports the general tendency that the neutron alignment remains rather constant before bandcrossing in this mass region [12]. The alignment additivity rule applied to these odd-A nuclei yielded $\approx 4.9\hbar$ [15,16], being close to the mean value of the alignment for band A. The dynamic moments of inertia, shown in Fig. 3, increase with increasing rotational frequency with a steeper slope for band A, which is another evidence for the progressive proton alignment. We also observed a sign of the existence of two more rotational bands with a limited number of transitions. A further experiment using heavier beams is being planned in order to draw a richer level scheme and also address the intriguing problems in this odd-odd ¹⁶⁸Lu nucleus.

This work was supported by the Basic Science Research Institute Program, Ministry of Education, 1997 (BSRI-97-2417) and in part by Korea Science and Engineering Foundation (KOSEF 961-0204-020-2) and by the Chung-Ang University special research grants in 1996.

References

- 1. Wang, X.-H. et al.: Nucl. Phys. A608, 77 (1996)
- 2. Juneja, P. et al.: Phy. Rev. C53, 1221 (1996)
- 3. Kreiner, A.J.: Phys. Rev. C38, 2486 (1988)
- 4. Hojman, D. et al.: Phys. Rev. C46, 1203 (1992)
- 5. Cardona, M.A. et al.: Z. Phys. A**354**, 5 (1996)
- Sun, H. et al.: Z. Phys. A351, 241 (1995)
- 7. Zhang, Y.H. et al.: Z. Phys. A355, 335 (1996)
- 8. Hojman, D. et al.: Phys. Rev. C45, 90 (1992)
- 9. Charvet, A. et al.: Nucl. Phys. A197, 490 (1972)
- 10. Barci, V. et al.: Phys. Rev. C55, 2279 (1997)
- 11. Ha, J.H. et al.: in preparation to publish.
- 12. Drissi, S. et al.: Nucl. Phys. A451, 313 (1984)
- 13. Mannanal, S.J. et al.: Nucl. Phys. A582, 141 (1995)
- Table of Isotopes, 8th ed., edited by R.B. Firestone and V.S. Shirley (Wiley, New York, 1996)
- 15. Bacelar, J.C. et al.: Nucl. Phys. A442, 509 (1985)
- 16. Kownacki, J. et al.: Nucl. Phys. A394, 269 (1983)