Short note

High-spin states in odd-odd ${ }^{168} \mathbf{L u}$

J.H. Ha^{1}, J.C. Kim^{1}, C.S. Lee ${ }^{2}$, J.Y. Huh^{2}, C.-B. Moon 3, Y. Gono ${ }^{4}$, S. Mitarai ${ }^{4}$, T. Morikawa ${ }^{4}$, M. Shibata ${ }^{4}$, H. Watanabe ${ }^{4}$, M. Miyake ${ }^{4}$, E. Komatsu ${ }^{4}$, A. Odahara ${ }^{5}$, E. Ideguchi ${ }^{6}$, X.H. Zhou ${ }^{6}$
${ }^{1}$ Department of Physics, Seoul National University, Seoul 151-742, Republic of Korea
${ }^{2}$ Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
${ }^{3}$ Department of Physics, Hoseo University, Chung-Nam 337-795, Republic of Korea
${ }_{5}^{4}$ Department of Physics, Kyushu University, Fukuoka 812-81, Japan
${ }^{5}$ Nishi-nippon Institute of Technology, Fukuoka 800-03, Japan
${ }^{6}$ RIKEN, Wako, Saitama 351-01, Japan

Received: 27 October 1997
Communicated by B. Herskind

Abstract

High-spin states of odd-odd ${ }^{168}$ Lu were observed up to $18 \hbar$ for the first time using the ${ }^{159} \mathrm{~Tb}\left({ }^{13} \mathrm{C}\right.$, $4 \mathrm{n} \gamma)^{168} \mathrm{Lu}$ reaction at $E_{13 C}=58.5 \mathrm{MeV} . \gamma-\gamma$ coincidence, E_{γ} singles, excitation function, and the DCO ratios were measured. Two rotational bands with signature splitting were populated, among which the lower-energy band is identified as $\pi 7 / 2^{+}[404] \otimes \nu 5 / 2^{+}[642]$ in view of alignment and energy systematics.

PACS. 23.20.Lv Gamma transitions and level energies $-27.70 .+\mathrm{q} 150 \leq A \leq 189$

High-spin states of odd-odd nuclei near $A=150$ and 190 have shown several intriguing phenomena such as an anomalous(delayed) bandcrossing [1,2], the identical band problem (e.g., ${ }^{173-175} \mathrm{Lu}[3]$ and ${ }^{171-175} \mathrm{Ta}[4]$), and signature inversion [5]. In lutetium isotopes, previous high-spin studies were reported on ${ }^{160} \mathrm{Lu}[6],{ }^{162} \mathrm{Lu}[7],{ }^{164} \mathrm{Lu}[1,2]$, and ${ }^{166} \mathrm{Lu}[8]$. However, no such studies have been done on ${ }^{168} \mathrm{Lu}$ to date. The known states are merely low-lying levels obtained by β-decay works $[9,10]$.

In the present work, high-spin states of odd-odd ${ }^{168} \mathrm{Lu}$ have been observed up to $18 \hbar$ or higher for the first time using the ${ }^{159} \mathrm{~Tb}\left({ }^{13} \mathrm{C}, 4 \mathrm{n} \gamma\right){ }^{168} \mathrm{Lu}$ reaction at a beam energy of 58.5 MeV . The ${ }^{13} \mathrm{C}$ beam was provided by the KUTL tandem accelerator at Kyushu University. The target of ${ }^{159} \mathrm{~Tb}$ was a self-supporting foil of $8.5 \mathrm{mg} / \mathrm{cm}^{2}$ in thickness. In order to identify γ rays belonging to lutetium isotopes, the $\mathrm{X}-\gamma$ coincidence employing a low energy photon spectrometer (LEPS) was performed at two different beam energies of 55.0 and 58.5 MeV . Figure 1 shows the spectra gated by the $54.1-\mathrm{keV} K$ X-ray of lutetium for the two beam energies. The population of ${ }^{169} \mathrm{Lu}$ whose γ rays are well known is seen to be preferred at the lower energy. The remaining γ rays, as shown in Fig. 1a, are likely to be candidate γ rays belonging to ${ }^{168} \mathrm{Lu}$.

After having identified γ rays belonging to lutetium isotopes - ${ }^{168} \mathrm{Lu}$ and ${ }^{169} \mathrm{Lu}$ being predominantly populated, we performed the singles measurements for the excitation function at three different beam energies of 50.0,

Fig. 1. Coincidence spectra gated by the $54.1-\mathrm{keV} K$ X-ray of Lu taken at two different beam energies of a 58.5 and $\mathbf{b} 55.0$ MeV . Solid circles represent transitions belonging to ${ }^{168} \mathrm{Lu}$ and (X) to ${ }^{169} \mathrm{Lu}$, respectively
55.0 , and 58.5 MeV in order to distinguish γ rays of ${ }^{168} \mathrm{Lu}$ from those of ${ }^{169} \mathrm{Lu}$. The latter, corresponding to the 3 n channel, is expected to be populated at a lower beam energy. The population of of ${ }^{168} \mathrm{Lu}$ is found to be most preferred at 58.5 MeV , and yields of ${ }^{168} \mathrm{Lu}$ relative to ${ }^{169} \mathrm{Lu}$ as a function of beam energy prove to be consistent with the CASCADE result [11]. The $\gamma-\gamma$ coincidence measurement was performed at the beam energy of 58.5

Fig. 2. Level scheme of ${ }^{168} \mathrm{Lu}$

MeV . We used three high-purity germanium (HPGe) detectors two of which were covered with bismuth germanate anti-Compton shield (BGO-ACS) and one LEPS. The two HPGe detectors with BGO-ACS were set at $90^{\circ}, 55^{\circ}$, one HPGe without BGO-ACS at 65°, and the LEPS at 125°, with respect to the beam direction. A total of 26 million coincidence events were collected during the experiment. Multipolarities of γ rays were determined from the DCO (Directional Correlation from Oriented states) ratio, defined as $I_{\gamma}\left(55^{\circ}\right.$, gated by $\left.90^{\circ}\right) / I_{\gamma}\left(90^{\circ}\right.$, gated by $\left.55^{\circ}\right)$ using an adjacent gate of stretched $E 2$ transition. The DCO ratios turned out to be ≈ 1 for $\Delta I=2$ and ≈ 0.6 for ΔI $=1$ transitions, respectively. Activity measurements were also performed by turning the beam off to identify γ rays of β-decay activities.

The level scheme consisting of two rotational bands is shown in Fig. 2. The bandhead spin and parity of band A is found to be 6^{+}by using the Drissi's recipe [12] and the energy systematics of neighboring odd-odd nuclei $\left({ }^{166} \mathrm{Lu}\right.$ [8], ${ }^{166} \mathrm{Tm}$ [13], ${ }^{162,164} \mathrm{Tm}$ [14]). The configuration of the band A is proposed as $\pi 7 / 2^{+}[404] \otimes \nu 5 / 2^{+}[642]$. Another rotational band B with weaker population is linked with the yrast band A via the 106.5 keV transition. Although this transition appears to be of dipole character from the DCO ratio, its intensity is too weak to make a firm assignment of spins for the members of band B.

The calculation using the Harris parameters of $\mathcal{J}_{0}=$ $29 \hbar^{2} / \mathrm{MeV}$ and $\mathcal{J}_{1}=125 \hbar^{4} / \mathrm{MeV}^{3}$ showed that the alignment for band A monotonically increases from $4 \hbar$ to $6 \hbar$ up to $\hbar \omega \approx 0.28 \mathrm{MeV}$. This could be probably due to the

Fig. 3. Dynamic moments of inertia of the band A and B in ${ }^{168} \mathrm{Lu}$
progressive proton alignment when the alignment is compared to the neighboring odd-A nuclei such as ${ }^{165} \mathrm{Yb}$ and ${ }^{167} \mathrm{Lu}[15,16]$. This supports the general tendency that the neutron alignment remains rather constant before bandcrossing in this mass region [12]. The alignment additivity rule applied to these odd-A nuclei yielded $\approx 4.9 \hbar[15,16]$, being close to the mean value of the alignment for band A. The dynamic moments of inertia, shown in Fig. 3, increase with increasing rotational frequency with a steeper slope for band A, which is another evidence for the progressive proton alignment. We also observed a sign of the existence of two more rotational bands with a limited number of transitions. A further experiment using heavier beams is being planned in order to draw a richer level scheme and also address the intriguing problems in this odd-odd ${ }^{168} \mathrm{Lu}$ nucleus.

This work was supported by the Basic Science Research Institute Program, Ministry of Education, 1997 (BSRI-97-2417) and in part by Korea Science and Engineering Foundation (KOSEF 961-0204-020-2) and by the Chung-Ang University special research grants in 1996.

References

1. Wang, X.-H. et al.: Nucl. Phys. A608, 77 (1996)
2. Juneja, P. et al.: Phy. Rev. C53, 1221 (1996)
3. Kreiner, A.J.: Phys. Rev. C38, 2486 (1988)
4. Hojman, D. et al.: Phys. Rev. C46, 1203 (1992)
5. Cardona, M.A. et al.: Z. Phys. A354, 5 (1996)
6. Sun, H. et al.: Z. Phys. A351, 241 (1995)
7. Zhang, Y.H. et al.: Z. Phys. A355, 335 (1996)
8. Hojman, D. et al.: Phys. Rev. C45, 90 (1992)
9. Charvet, A. et al.: Nucl. Phys. A197, 490 (1972)
10. Barci, V. et al.: Phys. Rev. C55, 2279 (1997)
11. Ha, J.H. et al.: in preparation to publish.
12. Drissi, S. et al.: Nucl. Phys. A451, 313 (1984)
13. Mannanal, S.J. et al.: Nucl. Phys. A582, 141 (1995)
14. Table of Isotopes, 8th ed., edited by R.B. Firestone and V.S. Shirley (Wiley, New York, 1996)
15. Bacelar, J.C. et al.: Nucl. Phys. A442, 509 (1985)
16. Kownacki, J. et al.: Nucl. Phys. A394, 269 (1983)
